2018: Fumigation and IR-4

Fumigation / Plasticulture

- > Past
- > Present
- > Future

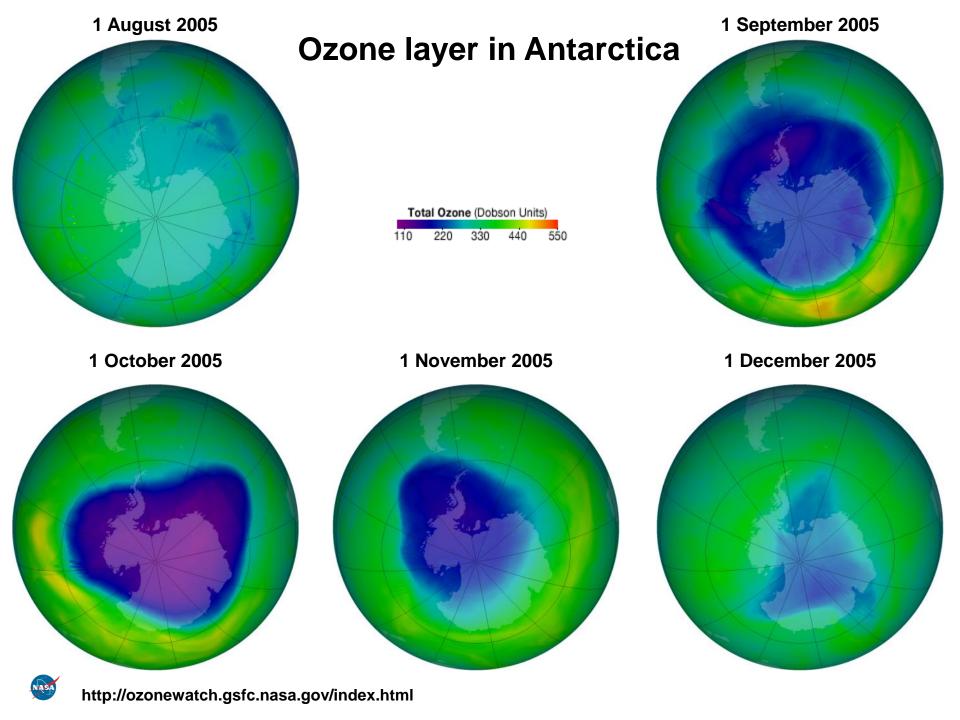
Farm Gate Value of Crops on Plastic in Georgia

Georgia Farm Gate Values – State Wide		
	Plasticulture	
Crop	Acres	Farm Gate Value
Banana & Hot Pepper	873	\$4,321,351
Bell Pepper	5,634	\$108,814,073
Cabbage	3,258	\$18,391,145
Cantaloupe	3,582	\$21,968,530
Cucumber	5,983	\$41,202,770
Eggplant	1,454	\$17,339,586
Strawberry	405	\$9,871,698
Squash	2,756	\$12,529,938
Tomato	2,796	\$39,008,214
Watermelon	15,416	\$135,619,200
Zucchini	2,335	\$20,442,910
Total	44,492	\$429,509,415

Source: Georgia Farm Gate Value Report, The University of Georgia, Center for Agribusiness and Economic Development

Georgia Production on Plastic

Methyl Bromide


> Over 50 years of use

WEEDS, DISEASE, NEMATODES

Methyl Bromide

- > Over 50 years of use
- > 1990 Montreal Protocol and Clean Air Act: methyl bromide was classified as a class 1 ozone depleting substance and for its gradual removal from the market.

Methyl Bromide Removal from the Market

> Production

1999 = 25% reduction

2001 = 25% reduction

2003 = 20% reduction

2005 = gone

(reduce methyl bromide ai over time)

Methyl Bromide Uses


- > QPS (Quarantine Pre Shipment) gas
 - **▶**Non-Soil Use (imports/exports)
 - Ex. wood
 - > Soil Use (mostly interstate movement)
 - Ex. Pine tree seedlings
- > CUE (Critical Use Exemption) gas
 - > Preplant soil fumigant applications

Methyl Bromide Critical Use Exemption

Pepper, Eggplant, Squash, Tomato, Melons, Cucumber

Purple and Yellow Nutsedges: Primary Weeds in a Plasticulture System

Prescription Fumigation

A Few Specialty Crop Values (Retail Value Per Acre 2014)

- 1. Watermelon (small bed mulch): \$9000
- 2. Watermelon (large bed mulch): \$14,400
- 3. Cantaloupe (small bed mulch): \$8666
- 4. Pepper (raised mulch): \$22,400
- 5. Tomato (raised mulch): \$33,600
- 6. Blueberry (high bush): \$10,000

Fumigant Systems For Weeds

1. Paladin Pic + Vapam TIF

All common weeds

2. UGA 3-WAY* TIF

3. Paladin Pic TIF

Good nutsedge, watch grass and pigweed

4. UGA 3-WAY LDPE

Watch nutsedge, good grass and pigweed

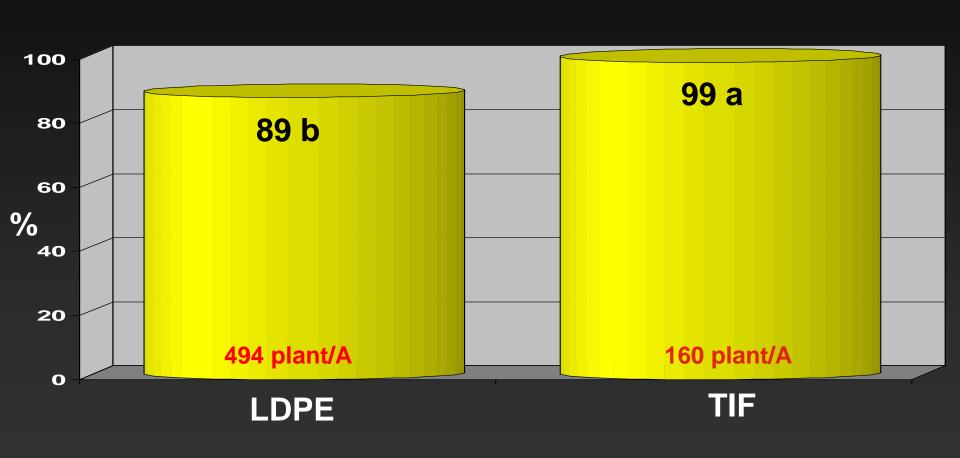
5. Pic Chlor 60 TIF

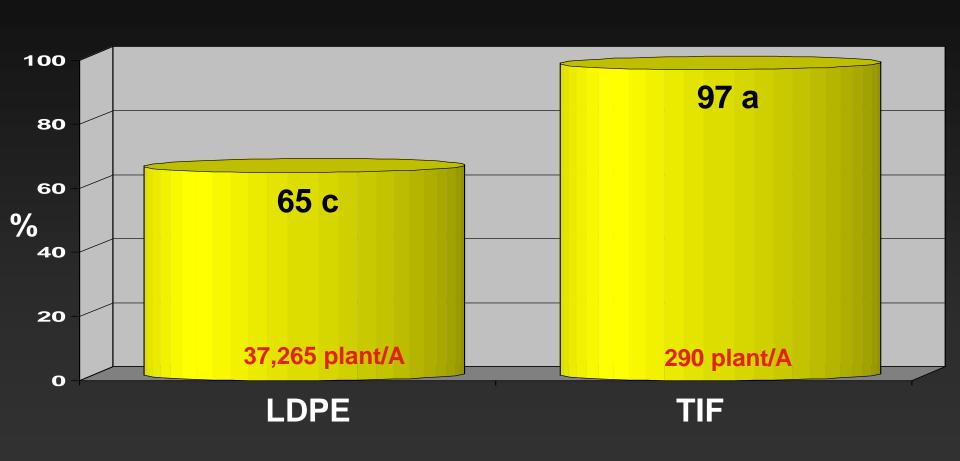
Watch nutsedge, grass, and pigweed...
...nematodes??

*UGA 3-WAY: system of Telone II, Pic, Metam

Metam Application with blades 4" apart applying metam 4" deep – no herbicide under mulch

Either LDPE or TIF Mulch Depending on Nutsedge Control Needed!


Selecting the Correct Mulch Can Be Challenging


Funnel glued to mulch and then left for a set amount of time

Nutsedge response to the 3-WAY. Tift Co., 2013.

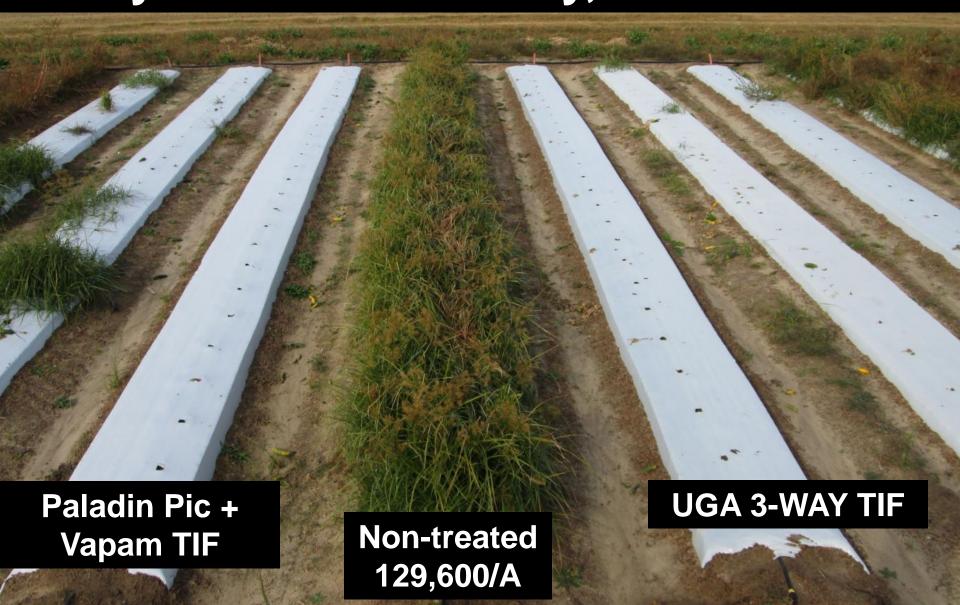
Nutsedge response to the 3-WAY. Echols Co., 2013.

UGA 3-WAY. Fall 2013. Tift Co.

Paldin Pic Systems

BE CAREFUL FOR ODOR MANAGEMENT MUST USE TIF MULCH

Metam Application with blades 4" apart applying metam 4" deep



Paladin Pic + Vapam

Check

Nutsedge response to top tier fumigant systems. Tift County, 2014 - Fall.

Production Challenges - #1

DRIVER

Factors Influencing Rate/Control

F U M G N R A We can influence quite quickly if willing!!!!


- 1. Higher populations of nutsedge
- 2. Warmer soil temperatures
- 3. Low moisture conditions (not wet either)
- 4. Soft bed (compaction)
- 5. Lighter texture the soil

Managing Nutsedge YEAR ROUND

- 1. Select the right fumigant system
- 2. Sandea in crop when feasible
- 3. Sandea row middles
- 4. Spray as soon as crop done:

Production Challenges - #2

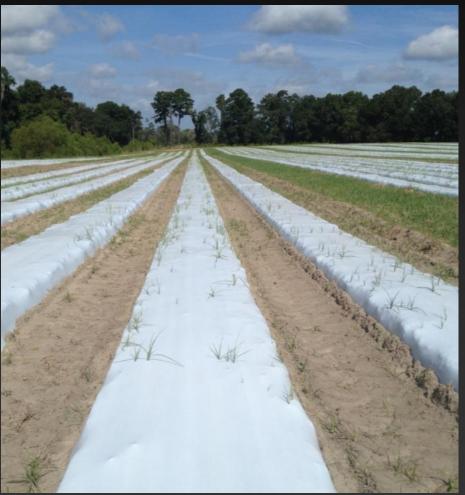
BED FORMATION

Proper bed facilitates better fumigant, water & fertilizer movement

Factors Influencing Rate/Control

M G N R A


1.


- 1. Higher populations of nutsedge
- 2. Bed formation (150 lb person sink $\frac{1}{2}$ inch)
- 3. Moisture (avoid dry; avoid wet)
- 4. Soil temperatures (cool good; hot bad)
- 5. Soil texture ("lighter" texture less control

INFLUENCE CONCENTRATION OVER TIME

Production Challenges - #2

BED FORMATION

Proper bed facilitates better fumigant, water & fertilizer movement

Production Challenges - #3

PLANT BACK INTERVALS

Ε S A C B 0 A Ν C K R

0

concentration over time (where the pest is located)

IR-4 Registrations Are Essential for Vegetable Producer Sustainability

Roger B. Batts
Field Research Director, NCSU IR-4 Center
and
Interim IR-4 Southern Region Field Coordinator

IR-4 Mission

Facilitating the regulatory approval of sustainable pest management technology for specialty crops and specialty uses to promote public well-being

Environmental Topics

Laws & Regulations

About EPA

Search EPA.gov

Q

CONTACT US

SHARE

Regulation of Pesticide Residues on Food

We set tolerances, which are the maximum amount of a pesticide allowed to remain in or on a food, as part of the process of regulating pesticides. In some countries tolerances are called maximum residue limits (MRLs).

About Tolerances

Introduction to tolerances

Finding Tolerances

How to search for tolerances

Setting and Revoking Tolerances

Tolerance Tools

Related Information

- Pesticide registration
- · Dietary risk assessment
- Find more pesticide information

Why Is IR-4 Needed?

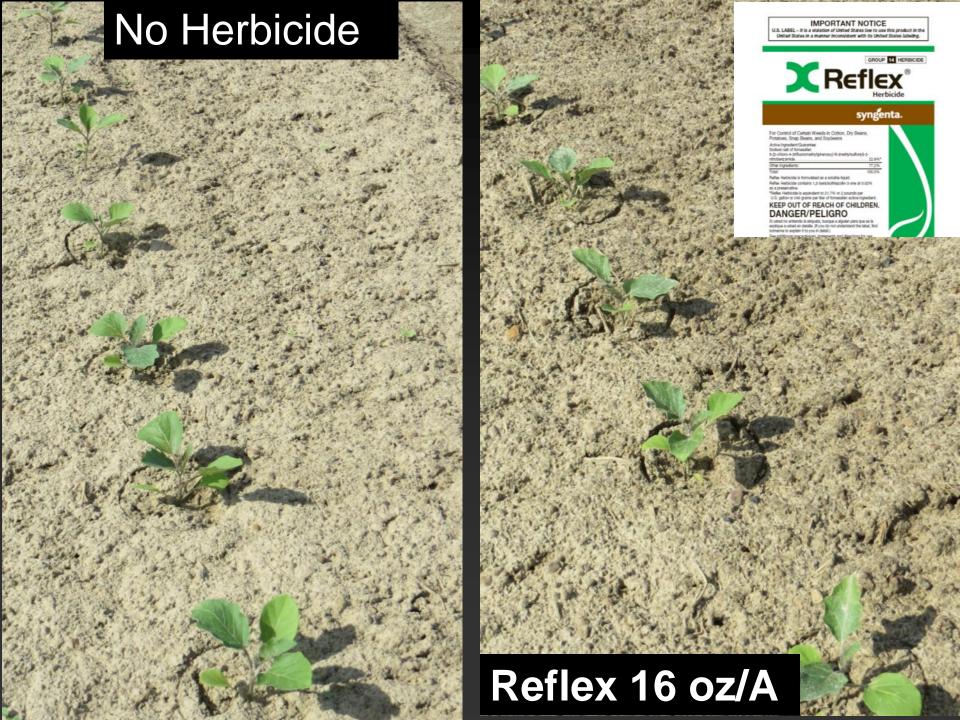
- Lack of Economic Incentive for Registrants
 - Development costs from 'discovery to jug' is estimated at \$250-350M
 - Limited patent life
 - Small acreage vegetable crops = relatively small amount of product sales
 - "Just not worth the registration expenses and efforts"
- Liability for Registrants
 - Vegetable crops generally have higher value
- This is not a new scenario. IR-4 was established by USDA in 1963 because of these same factors.

Who Benefits from IR-4

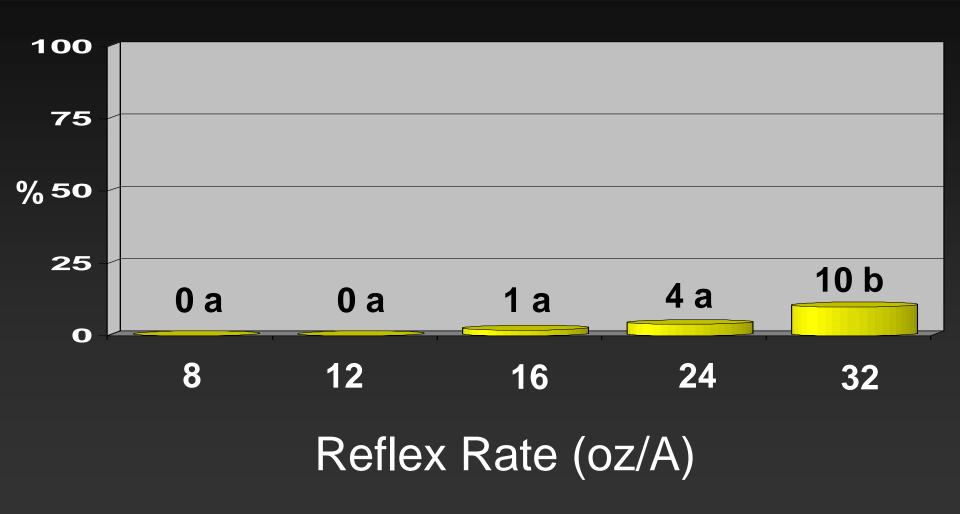
Growers

- Legal access to safe & effective pest management tools
- Protect and sell a higher proportion of their crop

Food Processors & Food Retailers


Consistent supply of materials

Crop Protection Industry


- Expanded registrations & potential sales
- Exclusive Use of Data Extension

Public

 Plentiful and more economical supply of fruits & vegetables that contribute to a healthy diet.

Visual Eggplant <u>Injury</u> to Reflex Preplant. TyTy, GA. 2017. 26-29 DAT.

^{*}Values followed by the same letter are not different at P = 0.05. Data combined over 2 runs.

How IR-4 Helps (cont'd)

Crop Groups and Crop Group Expansion

- EPA Crop Groups are based primarily on similar taxonomy and similar growth habits. Tolerances established on a the 'representative crop' of a CG apply to all crops in that CG. More 'bang for the buck'.
- Placing 'orphan crops' into established EPA crop groups can automatically get a tolerance applied to that crop. (Ex: Reflex/Eggplant)

Harmonization of International MRLs

- Different tolerance levels for the same product/crop combination in different countries can constrict trade.
- IR-4 leading international efforts to harmonize MRLs = 'level playing field'

INDUSTRY

Georgia Department of Agriculture

Commissioner Gary Black

New Vegetable Herbicide Uses - Last 10 Yr

- 1. Chateau tomato RM
- 2. Chateau pepper RM
- 3. Chateau eggplant RM
- 4. Chateau watermelon RM
- 5. Chateau cantaloupe RM
- 6. Chateau cucumber RM
- 7. Chateau squash RM
- 8. Chateau cabbage RM
- 9. Dual Magnum pepper topical
- 10. Dual Magnum broccoli topical
- 11. Dual Magnum cabbage topical
- 12. Dual Magnum collards topical
- 13. Dual Magnum cauliflower topical
- 14. Dual Magnum kale topical
- 15. Dual Magnum watermelon RM
- 16. Dual Magnum cantaloupe RM

- 17. Dual Mag. carrot topical
- 18. Dual Mag. sweet potato
- 19. Dual Mag. tomato topical
- 20. Dual Mag. snap bean topical
- 21. Dual Mag. lima bean topical
- 22. Dual Mag. southern pea topical
- 23. Dual Mag. squash topical
- 24. Caparol in Okra
- 25. Sandea in Okra
- 26. Reflex tomato preplant
- 27. Reflex pepper preplant
- 28. Reflex in Watermelon
- 29. Reflex in Squash
- 30. Reflex in Pumpkin
- 31. Treflan Intercropping
- 32. Dual Magnum pumpkin

We're from the government, we're here to help!

Learn More About IR-4:

http://ir4.rutgers.edu/